# Python代码实现Zernike 37项系数重建波前图
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import factorial
def zernike_radial(n, m, rho):
R = np.zeros_like(rho)
for k in range((n - abs(m)) // 2 + 1):
R += rho**(n - 2 * k) * ((-1)**k * factorial(n - k)) /
(factorial(k) * factorial((n + abs(m)) // 2 - k) * factorial((n - abs(m)) // 2 - k))
return R
def zernike_polynomial(n, m, rho, theta):
if m > 0:
return zernike_radial(n, m, rho) * np.cos(m * theta)
elif m < 0:
return zernike_radial(n, -m, rho) * np.sin(-m * theta)
else:
return zernike_radial(n, m, rho)
def wavefront_from_zernike(coefficients, grid_size=100):
x = np.linspace(-1, 1, grid_size)
y = np.linspace(-1, 1, grid_size)
X, Y = np.meshgrid(x, y)
rho = np.sqrt(X**2 + Y**2)
theta = np.arctan2(Y, X)
wavefront = np.zeros_like(X)
zernike_map = [
(0, 0), (1, -1), (1, 1), (2, 0), (2, -2), (2, 2), (3, -1), (3, 1), (3, -3), (3, 3),
(4, 0), (4, -2), (4, 2), (4, -4), (4, 4), (5, -1), (5, 1), (5, -3), (5, 3), (5, -5),
(5, 5), (6, 0), (6, -2), (6, 2), (6, -4), (6, 4), (6, -6), (6, 6), (7, -1), (7, 1),
(7, -3), (7, 3), (7, -5), (7, 5), (7, -7), (7, 7)
]
for i, (n, m) in enumerate(zernike_map[:len(coefficients)]):
wavefront += coefficients[i] * zernike_polynomial(n, m, rho, theta)
wavefront[rho > 1] = np.nan
return wavefront
coefficients = np.random.randn(37) # 随机生成37项Zernike系数
wavefront = wavefront_from_zernike(coefficients)
plt.imshow(wavefront, extent=[-1, 1, -1, 1], cmap='jet')
plt.colorbar()
plt.title('Wavefront Reconstruction from Zernike Coefficients')
plt.xlabel('X')
plt.ylabel('Y')
plt.show()