来源:光谱学与光谱分析,发表时间:2019-12-15
作者:赵鹏,唐艳慧,李振宇
摘要:采用体视显微高光谱成像方法,构建木材树种分类识别模型。利用SOC710VP体视显微高光谱图像采集系统获取可见光/近红外(372.53~1 038.57 nm)波段内的木材高光谱图像。首先,采用ENVI软件提取木材样本感兴趣区域(ROI)的平均光谱,分别采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对光谱数据进行降维。再利用支持向量机(SVM)分别建立木材样本采集波段和特征波长下的分类模型。然后,在空间维采用第一主成分图像,计算基于灰度共生矩阵(GLCM)的木材纹理特征。在0°, 45°, 90°和135°四个方向计算能量、熵、惯性矩、相关性等16个特征参数后输入SVM进行木材树种分类处理。最后,采用四个复合核函数SVM进行光谱维和空间维的特征融合及分类识别。20个树种的分类实验结果表明, CARS的特征波长选择效果和运行速度较好一些,采用普通SVM进行木材光谱维特征分类处理时,测试集分类准确率达到了92.166 7%。采用基于GLCM的木材空间维纹理特征时,采用普通SVM的测试集分类准确率是60.333 0%,具有较低的分类精度。在将光谱维和空间维纹理特征进行数据融合及分类处理时,采用复合核函数SVM分类具有更好的效果。采用第二个复合核函数的SVM分类精度最高,测试集分类正确率是94.166 7%,运行时间为0.254 7 s。另外,采用第一个和第三个复合核函数的SVM的测试集分类准确率分别是93.333 3%和92.610 0%,运行时间分别为0.180 0和0.260 2 s。可以看出,采用这3种复合核函数的SVM进行木材树种分类,分类精度都高于采用普通SVM的光谱维或者空间维的分类识别精度。因此,利用体视显微高光谱成像和复合核函数SVM可以提高木材树种分类精度,为木材树种快速分类提供了参考。
关键词:木材树种识别;高光谱成像;复合核函数;SVM;特征融合;